6,201 research outputs found

    Development of vibration design procedures for representative structural types Final technical report, Sep. 1965 - Jul. 1966

    Get PDF
    Effects of multimode and damping on random fatigue of cantilever beams and bracket

    Remote sensing of directional wave spectra using the surface contour radar

    Get PDF
    A unique radio-oceanographic remote sensing instrument was developed. The 36 GHz airborne Surface Contour Radar (SCR) remotely produces a real-time topographical map of the sea surface beneath the aircraft. It can routinely produce ocean directional wave spectra with off-line data processing. The transmitter is a coherent dual-frequency device that uses pulse compression to compensate for the limited available power at Ka band. The radar has selectable pulse widths of 1, 2, 4, and 10 nanoseconds. The transmitting antenna is a 58 lambda horn fed dielectric lens whose axis is parallel to the longitudinal axis of the aircraft. It illuminates an elliptical mirror which is oriented 45 deg to the lens' longitudinal axis to deflect the beam towards the region beneath the aircraft. The mirror is oscillated in a sinusoidal fashion through mechanical linkages driven to a variable speed motor to scan the transmitter beam (1.2 deg X 1.2 deg) with + or - 16 deg of the perpendicular to the aircraft wings in the plane perpendicular to the aircraft flight direction

    A modular, programmable measurement system for physiological and spaceflight applications

    Get PDF
    The NASA-Ames Sensors 2000! Program has developed a small, compact, modular, programmable, sensor signal conditioning and measurement system, initially targeted for Life Sciences Spaceflight Programs. The system consists of a twelve-slot, multi-layer, distributed function backplane, a digital microcontroller/memory subsystem, conditioned and isolated power supplies, and six application-specific, physiological signal conditioners. Each signal condition is capable of being programmed for gains, offsets, calibration and operate modes, and, in some cases, selectable outputs and functional modes. Presently, the system has the capability for measuring ECG, EMG, EEG, Temperature, Respiration, Pressure, Force, and Acceleration parameters, in physiological ranges. The measurement system makes heavy use of surface-mount packaging technology, resulting in plug in modules sized 125x55 mm. The complete 12-slot system is contained within a volume of 220x150x70mm. The system's capabilities extend well beyond the specific objectives of NASA programs. Indeed, the potential commercial uses of the technology are virtually limitless. In addition to applications in medical and biomedical sensing, the system might also be used in process control situations, in clinical or research environments, in general instrumentation systems, factory processing, or any other applications where high quality measurements are required

    High Accuracy Near-infrared Imaging Polarimetry with NICMOS

    Full text link
    The findings of a nine orbit calibration plan carried out during HST Cycle 15, to fully determine the NICMOS camera 2 (2.0 micron) polarization calibration to high accuracy, are reported. Recently Ueta et al. and Batcheldor et al. have suggested that NICMOS possesses a residual instrumental polarization at a level of 1.2-1.5%. This would completely inhibit the data reduction in a number of GO programs, and hamper the ability of the instrument to perform high accuracy polarimetry. We obtained polarimetric calibration observations of three polarimetric standards at three spacecraft roll angles separated by ~60deg. Combined with archival data, these observations were used to characterize the residual instrumental polarization in order for NICMOS to reach its full potential of accurate imaging polarimetry at p~1%. Using these data, we place an 0.6% upper limit on the instrumental polarization and calculate values of the parallel transmission coefficients that reproduce the ground-based results for the polarimetric standards. The uncertainties associated with the parallel transmission coefficients, a result of the photometric repeatability of the observations, are seen to dominate the accuracy of p and theta. However, the updated coefficients do allow imaging polarimetry of targets with p~1.0% at an accuracy of +/-0.6% and +/-15deg. This work enables a new caliber of science with HST.Comment: 13 pages, 9 figures, PASP accepte

    High Accuracy Imaging Polarimetry with NICMOS

    Get PDF
    The ability of NICMOS to perform high accuracy polarimetry is currently hampered by an uncalibrated residual instrumental polarization at a level of 1.2-1.5%. To better quantify and characterize this residual we obtained observations of three polarimetric standard stars at three separate space-craft roll angles. Combined with archival data, these observations were used to characterize the residual instrumental polarization to enable NICMOS to reach its full polarimetric potential. Using these data, we calculate values of the parallel transmission coefficients that reproduce the ground-based results for the polarimetric standards. The uncertainties associated with the parallel transmission coefficients, a result of the photometric repeatability of the observations, dominate the accuracy of p and theta. However, the new coefficients now enable imaging polarimetry of targets with p~1.0% at an accuracy of +/-0.6% and +/-15 degrees.Comment: 5 pages, 2 figures. Contributed talk, "Astronomical Polarimetry 2008. Science from Small to Large Telescopes" La Malbaie, Quebec, Canada, 200

    Readout of solid-state charge qubits using a single-electron pump

    Full text link
    A major difficulty in realizing a solid-state quantum computer is the reliable measurement of the states of the quantum registers. In this paper, we propose an efficient readout scheme making use of the resonant tunneling of a ballistic electron produced by a single electron pump. We treat the measurement interaction in detail by modeling the full spatial configuration, and show that for pumped electrons with suitably chosen energy the transmission coefficient is very sensitive to the qubit state. We further show that by using a short sequence of pumping events, coupled with a simple feedback control procedure, the qubit can be measured with high accuracy.Comment: 5 pages, revtex4, 4 eps figures. v2: published versio
    • …
    corecore